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Abstract

We investigate in this paper the numerical performances of quadratic functional quantization
with some applications to Finance. We emphasize the rôle played by the so-called product quantiz-
ers and the Karhunen-Loève expansion of Gaussian processes, in particular the Brownian motion.
We show how to build some efficient functional quantizers for Brownian diffusions. We propose
a quadrature formula based on a Romberg log-extrapolation of “crude” functional quantization
which speeds up significantly the method. Numerical experiments are carried out on two European
option pricing problems: vanilla and Asian Call options in a Heston stochastic volatility model.
It suggests that functional quantization is a very efficient integration method for various path-
dependent functionals of a diffusion processes: it produces deterministic results which outperforms
Monte Carlo simulation for usual accuracy levels.

Key words: Functional quantization, Product quantizers, Romberg extrapolation, Karhunen-Loève
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1 Introduction

This paper is an attempt to investigate the numerical aspects of functional quantization of stochastic
processes and their applications to the pricing of derivatives through numerical integration on path-
spaces; we will mainly focus on the Brownian motion and the Brownian diffusions viewed as square
integrable random vectors defined on a probability space (Ω,A,P) taking their values in the Hilbert
space L2

T
:= L2

R([0, T ], dt) endowed with the usual norm defined by |g|L2
T

= (
∫ T
0 g2(t)dt)1/2.

Abstract Quadratic quantization theory consists in studying the best approximation of X in
(L2

H
(Ω,P), ‖ . ‖2) by H-valued random vectors taking at most N values and all the induced questions:

optimization of the values, asymptotic rate of the quantization error bounds, explicit construction
of nearly optimal quantizers. The historical framework is the Euclidean one (H = Rd) comes from
Information Theory and Signal processing and was introduced in the late 1940’s. Its aim is to pro-
vide an optimal spatial discretization of a random vector-valued signal X with distribution PX by
a random vector taking N values in the codebook {x1, . . . , xN } (the N -tuple (x1, . . . , xN ) is called
a N -quantizer). Then, instead of transmitting the complete signal X(ω) itself, one first selects the
nearest codebook xi in the codebook and transmits its (binary coded) label i. After reception, a
proxy X̂(ω) of X(ω) is reconstructed using the codebook correspondence i 7→ xi (called the codebook
bible). For a given N , there is (at least) one N -quantizer which minimizes over (Rd)N the quadratic
quantization error ‖X − X̂‖2 induced by replacing X by X̂. In d-dimension, this lowest quantization
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error goes to zero at a N− 1
d -rate as N → +∞. Stochastic optimization procedure based on simulation

have been devised to compute these optimal quantizers. For an expository of mathematical aspects of
quantization in finite dimension we refer to [6] and the references therein. For Signal processing and
algorithmic aspects, we refer to [5], [4] and [19].

In the early 1990’, optimal quantization has been introduced in Numerical Probability to devise
some quadrature integration formulæ with respect to the distribution PX on Rd using that EF (X) ≈
EF (X̂) if N is large enough. This approach is efficient in medium dimensions (see [15], [16] and [19])
especially when many integrals need to be computed with respect to the same distribution PX : tables
of the optimal weighted N -tuples can be computed and kept off-line like for Gauss points on the unit
interval. Later, optimal quantization has been used to design some tree methods in order to solve
multi-dimensional non-linear problems involving the computation of many conditional expectations:
American option pricing, non-linear filtering for stochastic volatility models, portfolio optimization
(see [18] for a review of applications to computational Finance).

More recently the infinite dimensional setting has been extensively investigated from a theoretical
viewpoint with a special attention paid to functional quantization (FQ) i.e. the quantization of stochas-
tic processes viewed as random vectors taking values in their path spaces such as L2

T
:= L2([0, T ], dt)

(see [3],[11],[12], etc).
In this paper we aim to develop some first numerical applications of FQ. As concerns theoretical

background we partially rely on [13]. We also provide some new numerically-oriented ingredients. We
will focus on a financial framework: the pricing of path-dependent derivatives in a Heston stochastic
volatility model.

More generally what our approach can be applied to the computation of the expectation E(F (X))
where X is a Brownian diffusion (with explicit coefficients) and F is an additive (integral) functional
defined on L2

T
by ξ 7→ F (ξ) :=

∫ T
0 f(t, ξ(t)) dt.

In practice, true optimal quantizers of a process X are out of reach for numerical use, but some “rate
optimal” sequences of quantizers do have some semi-closed form. So the starting point for numerics is
to compute these “efficient” quantizers as well as the distribution of both their induced quantizations
X̂ and quantization errors ‖X−X̂‖2 (another property – stationarity – will be needed, see sections 3.2
and 4.1.2 further on). Then, the quadrature formulæ involving these N -quantizers make up an efficient
deterministic alternative to Monte Carlo simulation for the computation of EF (X).

As concerns Gaussian processes, this can be done by using an expansion of X on its Karhunen-
Loève (K-L) orthonormal basis. For Brownian diffusions, one maps the Brownian quantizers by solving
an integral equation system (see section 4.3 for a presentation or [13]).

Let us give an example of such a rate optimal sequence of stationary quantizers in the simpler case
where X = B is the standard Brownian motion on [0, T ]. Given N , we produce some optimal values
dN and (Nk)1≤k≤d

N
– in a sense to be specified in subsection 4.1.1 – such that N1×· · ·Nn ≤ N . Then,

the quantizer used for B (at level N) is

ϕN
i1,...,in(t) =

√
2
T

d
N∑

k=1

T

π(k − 1
2)

sin
(

π

(
k − 1

2

)
t

T

)
x

(Nk)
ik

, 1 ≤ ik ≤ Nk, 1 ≤ k ≤ dN ,

and its weight is

αN
i1,...,in =

d
N∏

k=1

α
(Nk)
ik

,

where (x(Nk)
ik

, α
(Nk)
ik

)1≤ik≤Nk
denotes the optimal (weighted) Nk-quantizer of the one-dimensional Nor-

mal distribution (see some examples at http://perso-math.univ-mlv.fr/users/printems.jacques/Fquantiz).
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Then EF (X) is approximated by the weighted sum by

∑

i1,...,in

αN
i1,...,in

∫ T

0
f(t, ϕi1,...,in(t)) dt.

However, “crude” FQ theoretically converges at a rather poor rate, usually (log N)−θ for some θ
depending on the pathwise regularity of the process X (e.g. θ = 1/2 for the Brownian motion). So,
hoping to compete successfully with Monte Carlo simulations needs to bet on its performances for
“reasonably low” values of N (say N≤10 000). In fact to help winning this bet, we will introduce two
speeding up procedures based on specific properties of FQ: one is stationarity, the other is a Romberg
like extrapolation which is introduced in section 5.2.

The paper is organized as follows: in Section 2 we provide some background on functional quan-
tization of (Gaussian) processes X viewed as L2

T
-valued random vectors. Section 3.1 is devoted to

stationarity and its first computational applications (one-dimensional optimal quantizers, etc). In Sec-
tion 3.2 some new weighted quadrature formulæ are established for EF (X) when F is a | . |L2

T
smooth

functional. In Section 4 we give several examples of efficient quantizers: first for Gaussian processes the
Karhunen-Loève product quantizers and some of their “non-Voronoi” variants (sections 4.1.1 and 4.2);
then some explicit rate optimal sequences of quantizers are proposed for Brownian diffusions. A
procedure is described to tabulate the optimal product quantizers. In Section 5.1, the computation
procedure of K-L product quantizers for the Brownian motion are described (as well as an extract of
the tables available on the web). In Section 5.2, the speeding up Romberg log-extrapolation method
is made explicit. In Section 6 the results of two numerical experiments are presented: the pricing of
vanilla calls in a Heston stochastic volatility model (as a benchmark since an FFT -semi-closed form
is available) and the pricing of an Asian option in the same model. The results are quite promising
(although we decided not to implemented any of the usual “variance reducer”). In particular, we point
out the efficiency of the Romberg log-extrapolation (sometimes combined with a linear interpolation
method) which numerically outperforms Monte Carlo simulation in both examples (within the range
of tested values). In Section 7, we outline an FQ-MC method to integrate irregular functionals F (X):
then FQ becomes a control variate random variable.

2 Preliminaries on quadratic functional quantization

Let (H, (. | .)H ) be a separable Hilbert space and X : (Ω,A,P) → H be a square integrable H-valued
random vector with distribution PX defined on H endowed with its Borel σ-field Bor(H). One denotes

by ‖ . ‖2 the usual quadratic norm on L2
H

(Ω,P) defined by ‖X‖2 =
√
E(|X|2

H
).

Let x := (x1, . . . , xN )∈ HN be an N -quantizer and let Projx : H → {x1, . . . , xN } be a projection
following the nearest neighbour rule. It means that the Borel partition made of the so-called Voronoi
cells Ci(x) := Proj−1

x ({xi}), i = 1, . . . , N , of H satisfies

Proj−1
x ({xi}) ⊂ {ξ∈ H | |xi − ξ|H = min

1≤j≤N
|xj − ξ|H}, 1 ≤ i ≤ N.

The partition(Ci(x))i=1,...,N is called a Voronoi tessellation of H induced by x. One defines the Voronoi
quantization of X induced by x by

X̂x := Projx(X).

(the exponent x will often be dropped or replaced by its size N ). It is the best L2(P)-approximation
of X by {x1, . . . , xN }-valued random vectors since, for any random vector X ′ : Ω → {x1, . . . , xN },

‖X −X ′‖2
2

=
∫

Ω
|X(ω)−X ′(ω)|2

H
P(dω) ≥

∫
min

1≤i≤N
|X(ω)− xi|2HP(dω) = ‖X − X̂x‖2

2
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There are infinitely many Voronoi tessellations, all producing the same quadratic quantization error
‖X − X̂x‖2 . In fact the boundaries of any Voronoi tessellation are contained in the union of finitely
many median hyperplanes Hij ≡ (xi − xj | xi+xj

2 − . )H = 0 (xi 6= xj). Hence, if the distribution PX

weights no hyperplane, then X̂x is P-a.s. uniquely defined.
The second step of the optimization procedure is to find an N -tuple x∈ HN , if any, which minimizes

the quantization error over HN . In fact one checks by the triangular inequality that the function

QX
N

: (x1, . . . , xN ) 7→ ‖X − X̂x‖2 = ‖ min
1≤i≤N

|X − xi|H ‖2

is Lipschitz continuous on HN . When N = 1, Q2
1
(x) = E|X − x|2

H
is a strictly convex function

which reaches its minimum Var(|X|H ) at x∗ := EX. Then, one shows by induction on N (see [11] for
details), that QX

N
always reaches a minimum at some optimal N -quantizer x∗ := (x∗1, . . . , x

∗
N

). As soon
as |suppPX | ≥ N , any such optimal N -quantizer has pairwise distinct components. The key argument
is that the function QX

N
is weakly lower semi-continuous on HN . (If H = R and PX has a log-concave

density, the optimal N -quantizer is unique, up to a permutation of its components). One shows using
an everywhere dense sequence in H that minHN (QX

N
)2 goes to 0 as N goes to ∞. Elucidating the rate

of this convergence is a much more demanding problem, even in finite dimension. It is elucidated for
non-singular Rd-valued random vectors by the so-called Zador Theorem (see [6]).

Theorem 1 (Zador, Bucklew & Wise, Graf & Luschgy) Assume that X∈ L2+η
Rd (Ω,P) for some η > 0.

Let f denote the density of the absolutely continuous part of PX (which can be possibly 0). Then

min
(Rd)N

(QX
N

)2 = min
x∈(Rd)N

‖X − X̂x‖2
2

=
J2,d

N2/d

(∫

Rd

f
d

d+2 (ξ)dξ

)1+2/d

+ o

(
1

N
2
d

)
as N → +∞.

When f 6≡ 0, this yields a sharp rate for the quadratic quantization error since the integral in the
right hand side is always finite under the assumption of the theorem. When f ≡ 0, this no longer
provides a sharp rate, although such sharp rates can be established for some special distributions (self-
similar distributions on fractal sets, etc). The true value of J2,d – which corresponds to the uniform
distribution over [0, 1]d – is unknown although one knows that J2,d = d/(2πe) + o(d).

3 Numerical integration using (functional) quantization

In this section, we first recall what stationarity of an N -quantizer is, then we provide some quadrature
formulæ (some of them are new) and finally we describe in details the log-Romberg speeding up
procedure (which remains partially heuristic given the present state of the art.

3.1 Stationarity quantizers

Definition 1 An N -quantizer x := (x1, . . . , xN )∈ HN is stationary if it satisfies

∀ i 6= j, xi 6= xj and P(X∈ ∪i∂Ci(x)) = 0 (3.1)

(PX -negligible boundary of the Voronoi cells) and

E(X | X̂x) = X̂x. (3.2)

The random vector X̂x is called a stationary N -quantization of X.
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In particular, any stationary quantizer satisfies E(X) = E(X̂x). Since the σ-fields generated by
X̂x and {{X∈ Ci(x)}, i = 1, . . . , N} coincide, Equation (3.2) also reads

xi =
E(1Ci(x)(X)X)
P(X∈ Ci(x))

= E(X | {X∈ Ci(x)}), i = 1, . . . , N. (3.3)

provided P(X∈ Ci(x)) > 0, i = 1, . . . , N .
In fact stationary quantizers are the critical points of (the square of) quadratic quantization er-

ror: The function x 7→ DX
N

(x) := ‖X − X̂x‖2
2

is continuously differentiable at any N -quantizer x
satisfying (3.1) and

∂DX
N

∂xi
(x) := 2E(1Ci(x)(X)(xi −X)) = 2

∫

Ci(x)
(xi − ξ)PX (dξ), 1 ≤ i ≤ N. (3.4)

Consequently, any (local) minimum of the quantization error function is stationary. Optimal N -
quantizer(s) are usually not the only stationary quantizers (see Proposition 4 below about Karhunen-
Loève product quantizers). However, in 1-dimension for log-concave one-dimensional p.d.f., there is a
unique stationary N -quantizer (the optimal one).

Note that owing to (3.2) the quantization error has then a simpler expressions

E|X − X̂x|2
H

= E|X|2
H
− E|X̂x|2

H
= E|X|2

H
−

N∑

i=1

|xi|2HP(X∈ Ci(x)). (3.5)

Similar equalities hold with the variances σ2(|X|H ) and σ2(|X̂x|H ) of X and X̂x since their first
moments coincide. We will see further on (Sections 3.2, 4 and 5.2) that stationary quantizers are an
important class of quantizers for numerics.

In finite dimension, several numerical methods to compute (locally) optimal quantizers are based
on the stationary equation. In 1-dimension the stationary quantizers are obtained by a Newton-
Raphson procedure. In higher dimension, we turn to stochastic gradient procedure. We refer to ([19])
for detailed explanations. Thus, a tabulation of optimal N -quantizers of the N (0; 1) distribution has
been carried out and kept off-line. Files can be can be downloaded at any of the following the URL’s
www.proba.jussieu.fr/pageperso/pages.html or perso-math.univ-mlv.fr/users/printems.jacques/n01/

It contains, for every N ∈ {1, . . . , 400},
– the (unique) optimal N -quantizer xN ,

– the P
ξ
-masses Pξ(Ci(xN )), i = 1, . . . , N , of its Voronoi cells (i.e. the distribution of ξ̂xN

, ξ ∼
N (0; 1)),

– the induced quadratic quantization error ‖ξ − ξ̂xN ‖2 (using (3.5)),

When X is a bi-measurable process and H = L2
T
, the stationarity condition in its form (3.3)

has consequences on the pathwise regularity of the elementary quantizers xi : they have (at least)
the regularity of t 7→ Xt from [0, T ] into L2(Ω,A,P) (see [11, 12] for details).Furthermore, if X is a
centered Gaussian process, one shows that stationary quantizers lie in the self-reproducing space of X
(see [11]), like the Cameron-Martin space H1 := {h ∈ L2

T
/ h(t)=

∫ t
0 ḣ(s)ds, ḣ∈ L2

T
} for the Brownian

motion.

3.2 Quadrature formulæ for numerical integration

The basic idea is that, on the one hand, a good quantization X̂x is close to X in distribution and, on
the other hand, for every Borel functional F : H → R and every x = (x1, . . . , xN )∈ HN ,

EF (X̂x) =
∑

1≤i≤N

PX (Ci(x))F (xi). (3.6)
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So if one has a numerical access to both the N -quantizer x and its “companion” distribution (PX (Ci(x)))1≤i≤N ,
the computation in (3.6) is straightforward. In the proposition below are established some error bounds
for EF (X)− EF (X̂x) based on Lp-quantization errors ‖X − X̂x‖p (with p = 2 or 4).

Item (a) devoted to Lipschitz continuous functionals is classical, item (b) extends a second order
quadrature formula involving stationary quantizers coming from [15] (see also [19]). Other quadrature
formulæ based on Lp-quantization, p 6= 2, can be derived.

Proposition 1 Let X∈ L2
H(Ω,P) and let F : H → R be a Borel functional defined on H

(a) First order quadrature formula: If F is Lipschitz continuous, then

|EF (X)− EF (X̂x)| ≤ [F ]Lip‖X − X̂x‖2

for every N -quantizer x ∈ HN . In particular, if (xN )N≥1 denotes a sequence of quantizers such

that lim
N
‖X − X̂xN ‖2 = 0, then the distribution

N∑

i=1

PX (Ci(xN ))δxN
i

of X̂xN
weakly converges to the

distribution PX of X as N → +∞.
(b) Second order quadrature formulæ: Assume that x is a stationary quantizer for X.

– Let θ : H → R+ be a nonnegative convex function. If θ(X)∈ L2(P) and if F is locally Lipschitz
with at most θ-growth, i.e. |F (x)− F (y)| ≤ [F ]

Liploc
|x− y| (θ(x) + θ(y)), then F (X)∈ L1(P) and

|EF (X)− EF (X̂x)| ≤ 2[F ]
Liploc

‖X − X̂x‖2‖θ(X)‖2 . (3.7)

– If F is differentiable on H with an α-Hölder differential DF (α∈ (0, 1]), then

|EF (X)− EF (X̂x)| ≤ [DF ]α‖X − X̂x‖1+α
2

. (3.8)

When F is twice differentiable and D2F is bounded then, one may replace [DF ]1 = [DF ]Lip by
1
2‖D2F‖∞ in (3.8).

– If DF is is locally Lipschitz with at most θ-growth, θ convex, θ(X)∈ L4(P), then

|EF (X)− EF (X̂x)| ≤ 3[DF ]
Liploc

‖X − X̂x‖2
4
‖θ(X)‖4 . (3.9)

(c) An inequality for convex functionals: Assume that x is a stationary quantizer. Then for
any convex functional F : H → R

EF (X̂x) ≤ EF (X). (3.10)

The proofs of these quadrature formulæ are postponed to an annex.

Remark: The error bound (3.9) involves ‖X − X̂x‖4 about which very little is known when x is a
stationary (or even optimal) quadratic quantizer of X: its rate of convergence as N goes to infinity
is not elucidated. So one often uses a less elegant (and probably less sharp) bound: assume that
θ(X)∈ Lp(P) for every p ≥ 1, then, for every ε∈ (0, 1],

|EF (X)− EF (X̂x)| ≤ [DF ]
Liploc

‖X − X̂x‖2−ε
2
‖X − X̂x‖ε

4
(1 + 3‖θ(X)‖ 1

ε

). (3.11)

Examples: • The typical regular functionals defined on (L2
T
, | . |

L2
T

) (most important example for

stochastic processes) are the integral functionals F defined by

∀ ξ ∈ L2
T
, F (ξ) =

∫ T

0
f(t, ξ(t)) dt
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where f : [0, T ] × R → R is a Borel function with at most linear growth in x uniformly in t. In
particular, F is Lipschitz continuous as soon as f(t, .) is (uniformly in t), convex if f(t, .) is for every
t, etc; in particular F is differentiable with an α-Hölder differential as soon as f(t, .) is differentiable
for every t∈ [0, T ] with an α-Hölder partial differential ∂f

∂x (t, .) (uniformly in t). Then

∀ ξ ∈ L2
T
, DF (ξ) =

∫ T

0

∂f

∂x
(t, ξ(t))dt.

• The functional F defined for every ξ∈ L2
T

by

F (ξ) :=
∫ T

0
eσξ(t)+ρtdt (ρ∈ R)

is convex, locally Lipschitz with θ-linear growth, infinitely differentiable. Furthermore, using that
|eu − ev| ≤ |u− v|(eu + ev) and Schwarz inequality, one derives that

[F ]
Liploc

:= σeρ+T and θ(ξ) = |eσξ|
L2

T

. (3.12)

4 Functional quantization revisited from the numerical viewpoint

In this section several results on functional quantization are re-visited to emphasize all the combi-
natorial and computational aspects that make possible numerical applications. Of course, among all
gaussian processes, the Brownian motion plays a central rôle. So, from now on, we will assume that
X is a bi-measurable process defined on a probability space (Ω,A,P) satisfying

E |X|2L2
T

=
∫ T

0
E(X2

s )ds < +∞

so that it can be viewed as an L2
T
-valued random vector (up to a P-negligible set). However many

results below remain true in an abstract Hilbert framework.

4.1 Gaussian processes

For convenience in this section we will assume from now on that all random processes X are centered
i.e.

EX = 0H .

4.1.1 Karhunen-Loève product quantizers

Let (en)n≥1 be an ortho-normal basis of L2
T
. One may expand the paths of (Xt)t∈[0,T ] on this basis

i.e.

X(ω)
L2

T=
∑

n≥1

(X(ω)|en)L2
T
en P(dω)-a.s. (4.13)

Since X is a Gaussian process, the sequence ((X|en))n≥1 is a Gaussian sequence of random variables
so that (4.13) can be written

X(ω)
L2

T=
∑

n≥1

√
cn ξn(ω)en P(dω)-a.s. (4.14)

where cn = Var((X|en)) and(ξn)n≥1 is a Gaussian sequence of N (0; 1)-distributed random variables,
usually not mutually independent. However there is a basis which plays a special rôle with respect to
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the process X: its Karhunen-Loève (denoted K-L) basis (e
X

n )n≥1 which achieves the infinite dimen-
sional PCA of its covariance operator ΓX defined by

∀ f ∈ L2
T
, ΓX (f) :=

(
t 7→

∫ T

0
f(s)E(XtXs)ds

)
.

The operator ΓX is a non-negative self-adjoint compact operator, so it can be diagonalized in an
orthonormal basis – the K-L basis – (e

X

n )n≥1 of L2
T
:

ΓX (e
X

n ) = λne
X

n , n≥ 1,

where the eigenvalues λn make up a nonincreasing sequence of nonnegative real numbers satisfying
∑

n≥1

λn = E |X|2L2
T

< +∞.

Without loss of generality one may assume that

∀n ≥ 1, λn > 0 (4.15)

since otherwise suppX 6= H. Then, the K-L eigenbasis is unique. (In case X is a finite dimensional
Gaussian vector, most of what follows remains true by setting d := max{n ≥ 1 : λn > 0} and
considering {1, . . . , d} instead of {1, . . . , n, . . .} as an index set.)

Then, it follows from the so-called “reproducing property” that

∀ f, g∈ L2
T
, Cov

(
(f |X)L2

T
, (g|X)L2

T

)
=

∫

[0,T ]2
f(t)g(s)E(XtXs)ds dt = (f |ΓX (g))L2

T

(4.16)

so that

c2
n = E (X|eX

n )2L2
T
) =

(
e

X

n |ΓX (e
X

n )
)

L2
T

= λn (4.17)

Cov((X|eX

n )L2
T
, (X|eX

m)L2
T
) = (e

X

n |ΓX (e
X

m))L2
T

= δn,mλn (4.18)

where δn,m is for Kronecker symbol. Consequently

X(ω)
L2

T=
∑

n≥1

√
λn ξn(ω)e

X

n P(dω)-a.s. (4.19)

where the sequence

ξn :=
(X|eX

n )L2
T√

Var((X|eX

n )L2
T
)
, n ≥ 1

is now i.i.d. and N (0; 1)-distributed. Expansion (4.19) is known as the K-L expansion of X. It
combines both orthonormality of the K-L basis (e

X

n )n≥1 and the mutual independence of its coordinates
ξn. Furthermore, the equality (4.19) holds in L2(dP⊗dt). In particular it holds P(dω)-a.s. at dt-almost
every time t∈ [0, T ]. It is the PCA of the process X in that all d dimensional truncations of (4.19)
produce the best d-dimensional approximation of X in the least square sense.

A very natural way to produce a functional quantization for Gaussian processes in L2
T

using at
most N elementary quantizers is to use a product quantizer of the form

X̂t =
∑

n≥1

√
λn ξ̂n e

X

n (t) (4.20)
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where ξ̂n := ξ̂x(Nn)

n = Projx(Nn)(ξn) is an optimal Nn-quantization of ξn and N1 × · · · × Nn ≤
N, N1, . . . , Nn ≥ 1. Note that for large enough n, Nn = 1 so that ξ̂n = 0 which makes the above series
a finite sum. Also keep in mind that the p.d.f. of normal distribution being log-concave the optimal
Nn quantizer x(Nn) := (x(Nn)

1 , . . . , x
(Nn)
Nn

) is unique (and already tabulated as mentioned above).
The N1× · · · ×Nn-quantizer χ that produces the above Voronoi quantization (4.20) is of the form

χi(t) =
∑

n≥1

√
λn x

(Nn)
in

e
X

n (t), i = (i1, . . . , in, . . .)∈
∏

n≥1

{1, . . . , Nn}. (4.21)

Definition 2 A quantizer χ defined by (4.21) is called a K-L product quantizer. For convenience
and when there is no ambiguity concerning the reference basis we will often denote χ by

χ =
√

λ⊗ x with x =
∏

n≥1

x(Nn).

Furthermore, one denote by Opq(X, N) the set

Opq(X, N) := {χ/ χ K-L product quantizer of size at most N as defined by (4.21)}

The proposition below describes the geometric structure

Proposition 2 Let χ =
√

λ⊗ x be a K-L product quantizer as defined by (4.21). Let dx := max{k :
Nk > 1}∈ N denote the “quantization dimension” (highest non-trivially quantized dimension).
(a) Then, the quadratic quantization error induced by χ satisfies

‖X − X̂χ‖2
2

=
∑

n≥1

λn ‖ξn − ξ̂Nn
n ‖2

2
= E|X|2L2

T
+

dx∑

n=1

λn (‖ξk − ξ̂Nn
k ‖2

2
− 1). (4.22)

(b) For every multi-index i∈
∏

n≥1

{1, . . . , Nn}, the associated Voronoi cell of χ is

Ci(χ) =
∏

n≥1

(
√

λnCin(x(Nn))). (4.23)

Remark. In fact, both claims only rely on the orthonormality of the basis (e
X

n )n≥1 and do not make
use of the specificity of the K-L basis.

Proof. (a) One notes that ‖X − X̂χ‖2
2

= Emin
i
|X − χi |2 where χi is given by (4.21). Then

Emin
i
|X − χi |2 = E


 min

1≤i1≤N1,···,1≤idx≤Ndx

∣∣∣∣∣∣
∑

n≥1

√
λn ξnen −

dx∑

n=1

√
λn x

(Nn)
in

en

∣∣∣∣∣∣

2


= E


 min

1≤i1≤N1,···,1≤idx≤Ndx

dx∑

n=1

λn |ξn − x
(Nn)
in

|2 +
∑

n≥dx+1

λn ξ2
n




=
dx∑

n=1

λn E
(

min
1≤in≤Nn

|ξn − x
(Nn)
in

|2
)

+
∑

n≥dx+1

λn

=
dx∑

n=1

λn E
(

min
1≤in≤Nn

|ξn − x
(Nn)
in

|2
)

+ E|X|L2
T
−

dx∑

n=1

λn

9



The first equality follows from the fact that, for every n > dx, x(Nn) = E(ξn) = 0.
(b) One may assume without loss of generality that, for every n ≥ 1, the components of x(Nn) are in an
ascending order i.e. i 7→ x

(Nn)
i is nondecreasing. Let i := (i1, . . . , idx , 1, . . .) and j := (j1, . . . , jdx , 1, . . .).

Then, if ζ =
∑

n ζnen∈ H, |ζ − χi |2 < |ζ − χj |2 if and only if

dx∑

n=1

√
λn

2
(
x

(Nn)
in

− x
(Nn)
jn

)(
ζn√
λn

− x
(Nn)
in

+ x
(Nn)
jn

2

)
< 0.

Then, for every fixed n, setting jn = in±1 and jn′ = in′ if n′ 6= n implies that

x
(Nn)
in

+ x
(Nn)
in−1

2
<

ζn√
λn

<
x

(Nn)
in+1 + x

(Nn)
in

2
i.e.

ζn√
λn
∈ Cin(x(Nn)).

One checks that this condition is sufficient. ♦

Then the lowest quadratic quantization error induced by K-L product quantizers having at most
N codebooks is obtained as the solution of the following optimization problem

min





d∑

n=1

λn min
RNn

‖ξ − ξ̂Nn‖2
2
+

∑

n≥d+1

λn, N1×· · ·×Nn ≤ N, N1, . . . , Nm ≥ 2, d ≥ 1



 . (4.24)

This provides an upper-bound for the lowest quantization error over all quantizers with at most N
codebooks. This approach is the starting point for theoretical estimation of the rate of convergence of
the quantization error in [11] (and in [12] with d-dimensional marginal blocks instead of 1-dimensional
ones; this holds for any orthonormal basis of L2

T
which is extensively exploited in these references).

Solving numerically the optimization problem (4.24) for a wide range of values of N when it is
possible is a first step to use functional quantization for numerics (see Section 5.1 for the Brownian
motion).

Now, let us come to the specific feature of the K-L expansion which makes possible numerical
implementation of the quadrature formulæ established in Section 3.2. A closed formula is available
for the distribution of X̂χ when χ is a K-L product quantizer, namely

∀ i ∈
∏

n≥1

{1, . . . , Nn}, P(X̂χ = χi) =
∏

n≥1

P(ξ ∈ Cin(x(Nn))), ξ ∼ N (0; 1). (4.25)

This follows from the combination of parallelepipedic shape (4.23) of the Voronoi cells Ci and the
independence of the normal random variables ξn, n ≥ 1 in the expansion (4.19) since

P(X̂χ = χi) = P
(
∩n≥1{

√
λnξn∈

√
λnCin(x(Nn)}

)
=

∏

n≥1

P(ξn∈ Cin(x(Nn)).

The weight vector (P(ξ ∈ Ci(x(Nn))))i=1,...,Nn is simply the distribution of the optimal Nn-quantization
ξ̂Nn := ξx(Nn)

, ξ ∼ N (0; 1)). hence, if one denotes by erf the distribution function of N (0; 1), one has

P(ξ ∈ Ci(x(Nn))) = erf
(
x

(Nn)
i+1/2

)
− erf

(
x

(Nn)
i−1/2

)
, i = 1, . . . , Nn

with x
(Nn)
i+1/2 :=

x
(Nn)
i+1 +x

(Nn)
i

2 , i = 1, . . . , Nn − 1, x
(Nn)
1/2 = −∞, x

(Nn)
Nn+1/2 = +∞ (They are available at the

formerly given URL’s). For our purposes here, no higher values than 100 are necessary for Nn.
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Practical rule for numerical implementation: Numerical implementation of the functional quan-
tization of a Gaussian process X is possible as soon as closed form is available for the eigensystem
(e

X

n , λn)n≥1.

The most important example of an explicit K-L system is of course the Brownian motion (Wt)t∈[0,T ]

whose K-L eigensystem is given by

e
W

n (t) :=

√
2
T

sin
(

π(n− 1/2)
t

T

)
, λn :=

(
T

π(n− 1/2)

)2

, n ≥ 1. (4.26)

Other common Gaussian processes have explicit K-L expansions like the Brownian bridge (e
X

n (t) :=
2/T sin

(
πn t

T

)
and λn := (T/(π n))2). The stationary Ornstein-Uhlenbeck process admits a semi-

closed form for its K-L system (see e.g. [8], p.195).

As a conclusion to this chapter let us cite an upper-bound obtained in [11] by solving the opti-
mization problem (4.24). This yields the following theoretical rate of convergence for the quantization
error of a Gaussian process X.

Proposition 3 Let X be a Gaussian process with a K-L eigensystem (e
X

n , λn)n≥1. Assume that
λn ≤ c∗ n−b, b > 1, c∗ > 0. Then

min
{
‖X−X̂χ‖2 , χ∈ Opq(X, N)

}
≤

(
c∗

(
b

2

)b−1( 1
b− 1

+4 CN (0;1)

))1/2
1

(log N)
b−1
2

(4.27)

where CN (0;1) := sup
N≥1

(
N2 min

x∈RN
‖ξ − ξ̂x‖2

)
. In particular, for the standard Brownian motion W ,

min
{
‖W−Ŵχ‖2 , χ∈ Opq(W,N)

}
≤ 2T

π

(
1 + 4CN (0;1)

)1/2 1

(log N)
1
2

.

Furthermore, it is also established in [11] using entropy methods that the above rate is the true
one: if λn ≥ c∗n−b (c∗ > 0) for every n ≥ 1 , then there is some real c′∗ > 0 such that

min
x∈HN

‖X − X̂x‖2 ≥ c′∗(log N)−
b−1
2 , N ≥ 1. (4.28)

Consequently the O(log N)−
1
2 )-rate is optimal for the Brownian motion and

There exists some rate optimal sequences (χN )N≥1 of K-L product quantizers for W .

Remarks. • A sharp rate based on a product quantization of X by d-dimensional marginal blocks
instead of 1-dimensional ones is established in [12] when λn = c

λ
n−b + o(n−b) (c∗ > 0):

min
x∈HN

‖X − X̂x‖2 =
c

1
2
λ b

b
2

2
b−1
2 (b− 1)

1
2

(log N)−
b−1
2 + o

(
(log N)−

b−1
2

)
. (4.29)

• A conjecture confirmed by numerical experiments is that CN (0;1) = lim
N

(
N2 min

x∈RN
‖ξ − ξ̂x‖2

)
=

π

2

√
3

(the second equality follows from Zador’s Theorem, see [12] for more details).

Extensions. • The upper-bound (4.27) remains true if one replaces mutatis mutandis the K-L eigen-
system by any system (en, c2

n)n≥1 where (en)n≥1 is an orthonormal basis of L2
T

and c2
n = Var((X | en)L2

T
)
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(but there no explicit formula for the distribution of these product quantizations). This is a way to get
the quantization error rates for many Gaussian processes like the fractional Brownian motion using
e.g. the Haar basis (see [11] for some examples).

• The upper-bound (4.27) also remains true if one considers a system (en, c2
n)n≥1 such that

∑
n≥1 cnξnen

converges to X in which en is no longer orthogonal (but still normed) provided that the random
variables ξn in (4.19) remain independent. This follows from the independence of ξn− ξ̂Nn

n , n ≥ 1 and
the stationarity property satisfied by ξ̂Nn

n , n ≥ 1 (see Section 4.2 below).

4.1.2 Stationarity of K-L product quantizer

The following proposition emphasizes a new important and typical feature of the K-L basis: that K-L
product quantizers are stationary. It is an important asset for numerical purposes since one may then
apply the second order quadrature formulæ established in Proposition 1(b).

Proposition 4 Let χ∈ Opq(X, N) be a K-L product quantizer of X. Then χ is stationary for X.

Proof (See also [6], Lemma 4.8). Let χ =
√

λ ⊗ x. The ξn being independent in the K-L expan-
sion (4.19), then the ξ̂n are independent in (4.20) as well. Furthermore, it is obvious from (4.20) and
the identity ξ̂n = (X̂χ|eX

n )L2
T
/
√

λn, n ≥ 1, that σ(X̂χ) = σ(ξ̂n, n ≥ 1). Consequently

E(X | X̂χ) =
∑

n

√
λnE(ξn | ξ̂m, m≥ 1) e

X

n =
∑

n

√
λnE(ξn | ξ̂n, ξ̂m, m ≥ 1, m 6= n) e

X

n

=
∑

n

√
λnE(ξn| ξ̂n)e

X

n =
∑

n

√
λn ξ̂ne

X

n (stationarity of ξ̂n),

= X̂χ. ♦

4.2 An example of computable non-Voronoi rate optimal quantizers: the an-
tiderivative of the Brownian motion

We will illustrate in this short paragraph how rate optimal product quantizers of the Brownian motion
can produce (non Voronoi) rate optimal quantizers of its antiderivative (nevertheless with an explicit
distribution).

First note that one can integrate a Karhunen-Loève expansion of the Brownian motion. In fact,
h 7→ ∫ .

0 h(s)ds being a Lipschitz continuous function from L2
T

into (C([0, T ]), ‖ . ‖sup), one has, in
L2

(C([0,T ]),‖.‖sup)(P) (and P-a.s. in L2
T
):

∫ t

0
Wsds

L2
T=

∑

n≥1

λn ξn

√
2
T

(
1− cos

(
t√
λn

))
with λn :=

(
T

π(n− 1/2)

)2

, n ≥ 1, (4.30)

= 2

√
2
T

∑

n≥1

λn ξn sin2

(
t

2
√

λn

)
(4.31)

where: – (ξn)n≥1 is i.i.d., normally distributed (and comes from the K-L expansion of W ),

– the sequence
(
t 7→

√
2
T

(
1− cos

(
t√
λn

)))
n≥1

is not orthonormal in L2
T
.

In fact, the expansion (4.30) converges P-a.s. and in L1(P), uniformly in t∈ [0, T ], since

sup
t∈[0,T ]

∣∣∣∣∣∣
∑

n≥1

λn ξn sin2

(
t

2
√

λn

)∣∣∣∣∣∣
≤

∑

n≥1

λn|ξn|.
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The series on the right hand of the inequality lies in L1(P) since
∑

n≥1 λn < +∞ and ξn ∼ ξ1∈ L1(P).
The same uniform L1(P)- convergence holds for the integrated product quantizer expansion, that is

∫̃ .

0
Wsds :=

∫ .

0
Ŵχ

s ds = 2

√
2
T

∑

n≥1

λn ξ̂n sin2

(
t

2
√

λn

)
(4.32)

since, by stationarity of the quantizer x(Nn) of ξn, E|ξ̂n| ≤ E|ξn| for every n ≥ 1 (the P-a.s. convergence

is trivial since ξ̂n = 0 for large enough n). One has to be aware that ˜∫ .
0 Wsds

χ

is not a Voronoi
quantization since it is defined on the Voronoi tessellation of the Brownian motion. For this very
reason it is easy to compute and furthermore it satisfies a kind of stationary equation: one checks that

σ( ˜
∫ .
0 Wsds) = σ(Ŵ ) = σ(ξn, n ≥ 1) so that, h 7→ ∫ .

0 h(s)ds being continuous and linear on L2
T
,

E
(∫ .

0
Wsds |

∫̃ .

0
Wsds

)
= E

(∫ .

0
Wsds | Ŵχ

)
=

∫̃ .

0
Wsds.

Proposition 5 Let χN ∈ Opq(W,N), N ≥ 1, let λn be defined by (4.30) and let ˜∫ .
0 Wsds

N

:=
∫ .
0 Ŵs

χN

ds be defined by (4.32).
(a) The quadratic quantization error is given by

∥∥∥∥∥∥

∫ .

0
Wsds−

∫̃ .

0
Wsds

χN
∥∥∥∥∥∥

2

2

= 3
∑

n≥1

λ2
n

(
1− (−1)n−1 4

√
λn

3T

)
min

x∈RNn
‖ξ − ξ̂x‖2

2
. (4.33)

If (χN )N≥1 is rate optimal for W then

∥∥∥∥∥
∫ .
0Wsds− ˜∫ .

0Wsds
χN

∥∥∥∥∥
2

= O((log N)−1) which is not rate

optimal. There is a rate optimal sequence ζN ∈ Opq(W,N) for
∫ .
0 Wsds i.e. such that

∥∥∥∥∥∥

∫ .

0
Wsds−

˜∫ .

0
Wsds

ζN
∥∥∥∥∥∥

2

= O((log N)−
3
2 ).

(b) Furthermore, the L1(P)-mean ‖ . ‖sup-quantization error satisfies

E


 sup

t∈[0,T ]

∣∣∣∣∣∣∣

∫ t

0
Wsds−

˜∫ t

0
Wsds

χN
∣∣∣∣∣∣∣


 ≤ 2

√
2
T

∑

n≥1

λn min
x∈RNn

‖ξ − ξ̂x‖2 . (4.34)

Proof: (a) Temporarily set En(t) = 1− cos
(

t√
λn

)
. Then |En|2

L2
T

= T
(

3
2 − 2(−1)n−1

√
λn
T

)
and

∣∣∣∣∣∣

∫ .

0
Wsds−

∫̃ .

0
Wsds

χN
∣∣∣∣∣∣

2

L2
T

=
2
T

∑

n,m≥1

λnλmE(ξn − ξ̂n)(ξm − ξ̂m) (En |Em)L2
T

so that

∥∥∥∥∥∥

∫ .

0
Wsds−

∫̃ .

0
Wsds

χN
∥∥∥∥∥∥

2

2

=
2
T

∑

n≥1

λ2
nE(ξn − ξ̂n)2|En|2

L2
T

.
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The above equality follows from the fact that the random variables ξn − ξ̂n, n ≥ 1, are independent
and centered since E(ξn − ξ̂n) = E(E(ξn|ξ̂n) − ξ̂n) = 0. The first rate follows from the optimal size
allocation for W in (4.24) then plugged in the right hand side of (4.33). The second follows from the
optimal size allocation directly in (4.33). We refer to [11] for details.

(b) easily follows from

sup
t∈[0,T ]

∣∣∣∣∣∣∣

∫ t

0
Wsds−

˜∫ t

0
Wsds

χN
∣∣∣∣∣∣∣
= 2

√
2
T

sup
t∈[0,T ]

∣∣∣∣∣∣
∑

n≥1

λn(ξn − ξ̂n) sin2

(
t

2
√

λn

)∣∣∣∣∣∣
≤ 2

√
2
T

∑

n≥1

λn |ξn − ξ̂n|. ♦

Remarks. • One derives similarly from (4.34) in claim (b) that the lowest L1(P)-mean L∞(dt)-
quantization error goes to zero at (least at) a O

(
(log(N))−1

)
-rate (this is not rate optimal, see [14]).

• Some rates can be obtained for higher iterated integrals (and the Brownian bridge too).

4.3 Explicit non-Voronoi rate optimal quantization of Brownian diffusions

In [13] the exact quantization error rate for a class of Brownian diffusions (including most 1-dimensional
ones) is established (see also [2]). It is a constructive approach based on the Lamperti transform and
stochastic calculus techniques. This rate is O((log N)−

1
2 ) like for the Brownian motion as soon as

the diffusion coefficient is not too degenerate. We shortly describe below how to construct an explicit
(non-Voronoi) quantizer sequence that yields the rate. Let

dXt = b(Xt)dt + σ(Xt)dWt, X0 = x0 (4.35)

be a Brownian diffusion where σ is a nonvanishing function. Let (χN )N≥1 be a sequence of rate
optimal K-L product quantizers of the Brownian motion. The components of χN are explicit C∞

functions. Some quantizers for X can be designed from the sequence (χN )N≥1 as follows: let L denote
the Lamperti transform defined by

L(y) :=
∫ y

0

dξ

σ(ξ)

(assumed to be real-valued and increasing). Then, Yt := L(Xt) satisfies an SDE

dYt = β(Yt)dt + dWt, Y0 = L(x0)

with a linear Brownian perturbation term (and an explicit function β specified in [13]). Then, one
defines, an N -quantizer of X by setting

xN
i (t) = L−1(uN

i (t)) where uN
i (t) = L(v0) +

∫ t

0
β(uN

i (t))dt + χN
i (t), i = 1, . . . , N

(for notational convenience, we temporarily switch to the simpler notation i for the index rather than
i: here, the multi-index feature plays no rôle). Elementary computations show that xN = (xN

i )1≤i≤N

is solution of the system of integral equations

xN
i (t) = v0 +

∫ t

0
[b(xN

i (s))− 1
2
σσ′(xN

i (s))]ds +
∫ t

0
σ(xN

i (s))dχN
i (s), i = 1, . . . , N. (4.36)

Let us note that the Ito correction term−1
2σσ′ would disappear if (4.35) was written in the Stratonovich

sense.
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When b and σ are both Lipschitz continuous the sequence (xN )N≥1 is rate optimal in Lp
L2

T

(Ω,P)

for every p ∈ [1, 2) (see Theorems 1 and 2 in [13]). More precisely, the sequence of non-Voronoi
N -quantizations

X̃xN

t :=
∑

1≤i≤N

xN
i (t)1Ci(χN )(W ), N ≥ 1,

satisfies
‖ |X − X̃xN |

L2
T

‖p = O((log N)−1/2), p∈ [1, 2).

When p = 2 an easy adaptation of the proof of Theorem 1 in [13] yields a O((log N)−
1
2
+ε)-rate in

Lp
L2

T

(Ω,P) for every ε > 0.

The quantization X̃xN
is not Voronoi since it is defined on the Voronoi tessellation of W , but

its distribution is simply the PW -weights of the cells Ci(χN ) which are known by (4.25). Numerical
implementation of these quantizers needs to use a discretization scheme of the integral system (4.36).
This is done in Section 6.1 to price options in a Heston stochastic volatility model.

This approach to functional quantization of diffusion heavily relies on the Lamperti transform
which is structurally 1-dimensional. However an extension to multi-dimensional diffusions is possible
e.g. if

σ(x) = (DS(x))−1

where S is C2-diffeomorphism on Rd (see Section 5 in [13] for details). Other specific multi-dimensional
settings can be dealt with in a constructive way as it will be seen in Section 6.2 with the stochastic
volatility Heston model: some stochastic integrals

∫ t
0 f(Zs)dWs will be approximated by functional

quantization when Z is a 1-dimensional diffusion process independent with the Brownian motion W .

5 Toward numerical implementation

5.1 Optimal product quantizers: the “blind” optimization procedure

Assume that closed forms are available for both components of the K-L eigensystem (e
X

n , λn)n≥1 of a
Gaussian process X as it is the case for the Brownian motion (or the Brownian bridge).

Then, we are in the position to solve numerically the optimization problem (4.24) which yields for
every N ∈ {1, . . . , Nmax} the best product quantizer χN

rec and its “companion parameters” (distribution
of X̂χN

rec , quantization error ‖X − X̂χN
rec‖2). The reason for implementing such a blind optimization

procedure is that the theoretical values which produce the exact asymptotic rate are not efficient
within the range of values of of numerical interest. Furthermore, this “blind” optimization procedure
is reasonably fast and its results can be kept off line. It is carried out in two steps.

Phase 1 (Optimization phase at fixed N): Producing the K-L product N -quantizer χN
opt =√

λ⊗ xopt with minimal quadratic quantization error among all product quantizers of size exactly N .
This phase is carried out by using the “library” storing the optimal Nn-quantizers x(Nn) and their

own companion parameters of the N (0; 1) distribution.
In practice, Nn ≤ 100 is enough for values of N as high as 106 since decompositions (dx too small)

involving not enough factors will clearly be far from optimality.

Phase 2 (Record Selection phase): Storing for every N ∈ {1, . . . , Nmax},
– the size Nrec := Nrec(N)∈ {1, . . . , N} which produces the lowest quadratic quantization error,
– the optimal decomposition Nrec = N rec

1 × · · ·×N rec
n × · · ·×N rec

drec
, (with n 7→ N rec

n non-increasing
and N rec

drec
≥ 2, N rec

drec+1 = 1),
from which one retrieves instantly
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– the K-L product quantizer χN
rec = χNrec

opt which solves the optimization problem (4.24) at level N .

– the distribution of its related quantization X̂χN
rec (using formula (4.25)),

– the corresponding quantization error by (4.22).

Table 1 below provides Nrec, the quantization error and the record decomposition first for several
typical values of N , namely N = 1, 10, 100, 1 000, 10 000 (the full record table, the record quantizer
list including the distributions are available at the same URL). Figure 8 show the K-L product
quantizers of the Brownian motion on [0, 1] for N = 10, 48 and for the “record value” of N = 100 that
is Nrec = 96.

N Nrec Quantiz. Error Nrec Decomposition
1 1 0.7071 1
10 10 0.3138 5 – 2
100 96 0.2264 12 – 4 – 2

1 000 966 0.1881 23 – 7 – 3 – 2
10 000 9 984 0.1626 26 – 8 – 4 – 3 – 2 – 2
100 000 97 920 0.1461 34 – 10 – 6 – 4 – 3 – 2 – 2

Table 1. Brownian motion: Some typical “record” values for numerical implementations
Figure 2 shows the graphs of both N 7→ ‖W − ŴχN

rec‖2
2

and N 7→ ‖W − ŴχN
opt‖2

2
for N ∈

{1, . . . , 1 000}. Figure 3 depicts N 7→ ‖W − ŴχN
rec‖−2

2
in a log-log scale which emphasizes the log N

behaviour of the distortion. The coefficients obtained by a linear regression yield

‖W − ŴχN
opt‖−2

2
≈ 4 log N + 2 i.e. ‖W − ŴχN

rec‖2
2
≈ 0.25

log N + 0.5
, 1 ≤ N ≤ 10 000.

The lower and upper bounds provided by (4.28) and (4.27) respectively are on [0, 1],

1
π2

22

22−1(2− 1)
=

2
π2

≈ 0.2026 < 0.25 < 1.2040 ≈ 1
π2

(1 + 2π
√

3). (5.37)

confirm the above bound (5.37).
Firstly, we shortly describe the operating optimization procedure to obtain optimal product quan-

tizers of size at most N for every N ≤ Nmax. Then, we propose a Romberg like extrapolation method
which speeds up the convergence of the functional quantization method so that it produces very ac-
curate results for moderate values of N , say less than 10 000. We include it in this section since it still
relies on some conjectures concerning F -K product quantizers.

5.2 The Romberg log-extrapolation

For convenience we will only consider the case of the Brownian motion since we have a sharp rate for
its quadratic quantization error rate, but the method works with any other process for which such
a result holds. Let Ψ : (L2

T
, | . |

L2
T

) → R be a three times differentiable functional such that D2Ψ is

bounded and Lipschitz. Let (χN )N≥1 denote a sequence of rate optimal K-L product quantizers of
the Brownian motion W and let ŴN := ŴχN

denote the related Voronoi quantizations. First note
that by Proposition 4 (stationarity)

E(DΨ(ŴN ) | W − ŴN )L2
T

= E(DΨ(ŴN ) | E(W | ŴN )− ŴN )L2
T

= 0.

Then, it follows from the Taylor formula that there is some bounded random vector ζ such that

E(Ψ(W )) = E(Ψ(ŴN )) +
1
2
E(D2Ψ(ŴN ).(W − ŴN )⊗2) + E(ζ.(W − ŴN )⊗3). (5.38)
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The sequence (χN )N being rate optimal E(D2Ψ(ŴN ).(W−ŴN )⊗2) = O
(
(log N)−1

)
. However, recent

finite dimensional results (see [1], Theorem 6) as well as several numerical experiments suggest a true
expansion: this means conjecturing the existence of a real constant κΨ >0 such that

E(D2Ψ(ŴN ).(W − ŴN )⊗2) = 2 κΨ(log N)−1 + o((log N)−1) as N →∞. (5.39)

If one also assumes that E|W − ŴN |3
L2

T

= o((log N)−1) (which also holds as a conjecture), then a

speeding up Romberg log-extrapolation can be implemented as follows: one computes E(Ψ(ŴM )) and
E(Ψ(ŴN )) for some M = M(N) < N , M(N) ³ N r, r∈ (0, 1). Then solving the linear system

E(Ψ(W )) = E(Ψ(ŴM)) +
κΨ

log M
+ o((log M)−1), E(Ψ(W )) = E(Ψ(ŴN)) +

κΨ

log N
+ o((log N)−1)

yields the Romberg log-extrapolation formula

E(Ψ(W )) =
log N×E(Ψ(ŴN ))− log M×E(Ψ(ŴM ))

log N − log M
+ o

(
(log N)−1

)
. (5.40)

So we passed from a O((log N)−1)-rate to an o
(
(log N)−1

)
-rate. The conjecture (supported by numer-

ical simulations not reproduced here) concerning E|W − ŴN |3
L2

T

is that a o
(
(log N)−( 3

2
−ε)

)
, ε > 0,

rate holds. In fact very little is known on the Lp′-quantization error induced by Lp-optimal quantizers
when p′ > p even in 1-dimension. If the same rate holds in (5.39), then a o

(
(log N)−( 3

2
−ε)

)
-rate holds

in (5.40).
An alternative to this approach can be to replace log N by ‖W − ŴχN

opt‖−2
2

in (5.40) (and idem for
M), as suggested by B. Wilbertz [23]. Some tests in [23] show that it often improves the accuracy of
the extrapolation and has a stabilizing effect on the choice of the couples (N, M).

6 Numerical experiments using a Heston stochastic volatility model

In this section we use the functional quantization based quadrature formulæ to price vanilla Calls and
Asian Calls in a Heston model. This is a stochastic volatility model introduced by Heston in 1993
(see [7]) in which the squared volatility process is driven by a CIR process. Namely, the dynamics of
the “risky” asset price process is given by

{
dSt = St(r dt +

√
vt) dW 1

t , S0 = s0 > 0,

dvt = k(a− vt)dt + ϑ
√

vt dW 2
t , v0 > 0, with <W 1,W 2 >t= ρ t, ρ∈ [−1, 1],

(6.41)

where r denotes the (constant) interest rate and (vt) denotes the square stochastic volatility process
and a, k, ϑ are non-negative real parameters. The equation for the (vt) has a unique (strong) pathwise
continuous solution living in R+ (see e.g. [10] and [9], p.235). Note that in this section, we emphasize
the numerical aspects and that in many situations we have no proof yet to support rigorously the
results that we observe. This is due to the fact that the volatility process has a non Lipschitz diffu-
sion coefficient. In particular the assumptions required in [13] to get some error rates for functional
quantization of diffusion are not satisfied (except in some special cases as pointed out below).

6.1 A benchmark: pricing vanilla options in a Heston model

The pricing of vanilla calls and puts is simply a benchmark to evaluate the efficiency of the method
since a quasi-closed form for their premium is available (based on an FFT). It involves some integrals of
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the characteristic function the couple (vt,
∫ t
0 vsds) for which a true closed form is available (see e.g. [10]

or [7]). We use it to compute the reference premia in our experiments (its approximate accuracy is
10−2, see [7]). Our aim is to price by functional quantization (at time 0) European Calls on the
underlying asset (St) with strike price K and maturity T > 0, i.e.

CallHest(S0,K, r) = e−rTE((ST −K)+).

As a first step, we follow an approach which works for more general dynamics of the stochastic
volatility. First we project W 1 onto W 2 so that

W 1
t = ρW 2

t +
√

1− ρ2 W̃ 1
t ,

with W̃ 1 a standard Brownian motion independent of W 2. Then, Itô calculus shows that

St = s0 exp
(
−ρ2

2
v̄t t + ρ

∫ t

0

√
vsdW 2

s

)
exp

(
(r − 1− ρ2

2
v̄t)t +

√
1− ρ2

∫ t

0

√
vsdW̃ 1

s

)

with v̄t = 1
t

∫ t
0vsds. Consequently, using the independence of W̃ 1 and W 2, one derives that

CallHest(S0,K, r, v0, T ) = E
(
e−rTE

(
(ST −K)+ | FW 2

T

))
= E

(
CallBS

(
S

(v)
0 ,K, r,

(
(1− ρ2)v̄T

) 1
2 , T

))

with S
(v)
0 = s0 exp

(
−ρ2

2
v̄T T + ρ

∫ T

0

√
vsdW 2

s

)

where CallBS(s0,K, r, σ, T ) denotes the regular (r, σ, T )-Black-Scholes model premium function (for
vanilla calls). Then the equation satisfied by (vt) yields(1)

∫ t

0

√
vsdW 2

s =
vt − v0 − kt(a− v̄t)

ϑ
(6.42)

so that finally

CallHest(S0,K, r, v0, T ) = E (Φc(vT − v0, v̄T )) (6.43)

with Φc(v, v̄) = CallBS

(
s0 exp

(
ρT

[(
k

ϑ
− ρ

2

)
v̄ +

v

Tϑ
− ka

ϑ

])
,K, r,

(
(1− ρ2)v̄

) 1
2 , T

)
.

An analogous formula holds for PutHest(S0,K, r, v0, T ) by replacing mutatis mutandis CallBS by PutBS

in (6.43). Then function Φc is C∞ on (0, +∞)2. Note that when ρ = 0, (6.43) only depends on the
L2-continuous linear functional v̄T .

Following the quantization procedure described in section 4.3, we set b(v) = −k(v−a) and σ(v) =
ϑ
√

v. Unfortunately, since the function σ is non-Lipschitz at 0, we cannot rigorously claim from [13]
that solutions of the the integral system (4.36) produce a rate optimal sequence (yN ) for (vt). However,
we will see (when ϑ2

4k < a) that it produces satisfactory numerical results.

A Setting: a = ϑ2

4k . This special setting will make possible to investigate the efficiency of functional
quantization for smooth functionals since, in this setting, the solutions of the integral equation (4.36)
can be made explicit. Hence, there is no error due to the time discretization scheme of (4.36).

1The key point in what follows is to express the stochastic integral
R t

0

√
vsdW 2

s as a functional of vt, v0 and an integral
functional of (vs). If the variance process follows a general diffusion process dvt = b(vt)dt + ϑ(vt)dW 2

t then one may
apply under appropriate regularity assumption, Itô’s formula to the function ϕ(v) :=

√
v/ϑ(v) to get such an expression.
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So, in some way it is more illustrative of the numerical performances of functional quantization.
This follows from a fact pointed out by Rogers in [21]: one may assume without loss of generality that
the process (vt) is the square of a scalar Ornstein-Uhlenbeck process

dXt = −k

2
Xtdt +

ϑ

2
dW 2

t , X0 =
√

v0. (6.44)

Having in mind that the N -quantizers χN =
√

λ⊗ x∈ Opq(W,N) given by (4.21) read

χN
i (t) =

√
2
T

∑

n≥1

x
(Nn)
in

T

π(n− 1/2)
sin

(
π(n− 1/2)

t

T

)
, i = (i1, . . . , in, . . .)∈

∏

n≥1

{1, . . . , Nn},

the integral system (4.36) associated to X, namely

xi(t) =
√

v0 − k

2

∫ t

0
xi(s) ds +

ϑ

2
χN

i (t), i = (i1, . . . , in, . . .)∈
∏

n≥1

{1, . . . , Nn}, (6.45)

has a closed form given by

xN
i (t) = e−kt/2√v0 +

ϑ

2

∑

n≥1

x
(n)
in

c̃n ϕn(t) with c̃n :=
T 2

(π(n− 1/2))2 + (kT/2)2

and ϕn(t) :=

√
2
T

(
π

T
(n− 1/2) sin

(
π(n− 1/2)

t

T

)
+

k

2

(
cos

(
π(n− 1/2)

t

T

)
− e−kt/2

))
.

Then, following [13], we have for every p∈ [1, 2),

‖X̃N −X‖p ≤ Cp,k,ϑ,T ‖Ŵ 2
χN

−W 2‖2 = O
(
(log N)−

1
2

)
(6.46)

where X̃N is the non-Voronoi quantization defined by

X̃N
t =

N∑

i=1

xN
i (t)1Ci(χN )(W

2) = e−kt/2√v0 +
ϑ

2

∑

n≥1

ξ̂x(n)

n c̃n ϕn(t), t∈ [0, T ].

One designs a (non-Voronoi) N -quantization for the process (vt) by setting

ṽN
t = (X̃N

t )2 =
∑

i

(xN
i (t))21Ci(χN )(W

2). (6.47)

Then, one derives from (6.46) that, for every p∈ [1, 2],

‖ |ṽN − v|
L2

T

‖p = O
(
(log N)−( 1

2
−ε)

)
for every ε > 0. (6.48)

Finally, a first approximation of CallHest(S0, K, r, v0, T ) is based on (6.43)

ĈrCall
Hest

(s0,K, T, v0, r) := E(Φc(ṽT − v0, ṽT )) (6.49)

=
∑

i

Φc

(
(xN

i )2(T )− v0, (xN
i )2(T )

)
P(Ŵ 2 = χN

i )

where the probability distribution (P(Ŵ 2 = χN
i ))i is given by (4.25). The notation “Cr” is for “Crude”.
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The Call-Put parity equation provides a second proxy of the Call by setting

P̂rCall
Hest

(s0,K, T, v0, r) := s0 − e−rT K + E(Φp(ṽT − v0, ṽT )). (6.50)

When ρ 6= 0, no error bound is available for these proxies since we do not know the rate of pointwise
quantization of vT by the quadratic functional quantizer ṽT .

When ρ = 0, Φ̄c(vT − v0, v̄T ) = Φ̄c(0, v̄T ) does not depend on vT and is clearly Lipschitz in v̄T , so
the theoretical rate of convergence is O

(
(log N)−( 1

2
−ε)

)
(without any acceleration techniques).

As concerns the Romberg log-extrapolation, one notices that both functions σ 7→ CallBS(s0,K, r, σ, T )
and its Put counterpart are infinitely differentiable on (0, +∞) and u 7→ ūT := 1

T

∫ T
0 u(s)ds is an

L2
T
-continuous linear functional. On the other hand, the solution of the integral equation x(t) =

x(0) − k
2

∫ t
0 x(s)ds + ϑ

2 ξ(t) is also an L2
T
-continuous linear functional functional of ξ. Consequently,

one may write
CallHest(s0,K, T, r) = E(Ψc(W 2)) = s0 − e−rT K + E(Ψp(W 2))

where Ψp and Ψc are infinitely differentiable and Ψp is bounded with all its differentials which suggests
a favourable framework to implement the Romberg log-extrapolation.

Following the results of former experiments carried out with the Asian option in a Black & Scholes
model (see [20]) we compute time integrals by the midpoint method with n = 20, i.e.

(xN
i )2 =

1
T

∫ T

0
(xN

i (s))2ds ≈ 1
n

n∑

k=1

(xN
i (tk))2 with tk =

(2k − 1)T
2n

.

The set of parameters of the Heston model is specified as follows

s0 = 50, r = 0.05, T = 1, ρ = 0.5, v0 = a = 0.01, ϑ = 0.1, k = 0.25.

Note that E vt = a, t∈ [0, T ] (and a = ϑ2/(4k)).

We carried out our numerical experiments on a whole vector of strike prices K∈ {44, 45, . . . , 55, 56}
(with step 1) to evaluate the performances of the method for in-, at- and out-of-the-money options.
The Heston Call premium vector were computed using:

– a “crude”FQ integration using ĈrCall
Hest

(s0,K) given by formula (6.49) with optimal product
N -quantizer of sizes N = Nrec = 96, 966, 9 984, 97 920.

– a Romberg log-extrapolation ̂RbgCrCall
Hest

(s0, K) based on (5.40) for the three couples (N, M) =
(96, 966), (966, 9984) and (9 984, 97 920). (Since ρ 6= 0, we have no theoretical evidence that it speeds
up the convergence so this is just a numerical experiment).

– a K-linear interpolation method (which is purely numerical at this stage): the principle is to

interpolate ̂RbgCrCall
Hest

(s0,K) and its counterpart ̂RbgPrCall
Hest

(s0,K) (obtained using the model-
free Call-Put parity equation) by setting for every K∈ {Kmin, . . . , Kmax}

ÎRCall
Hest

(s0,K) =
(K −Kmin) ̂RbgCrCall

Hest
(s0,K) + (Kmax −K) ̂RbgPrCall

Hest
(s0,K)

Kmax −Kmin
.

Doing so we put proportionally more weight on the “less random” variable which tends to make the
global error smaller. It means we put more weight on the Put when K is small, on the Call, when K
is large. This is a purely heuristic approach (2)

2In a standard Monte Carlo method if two r.v. X 6= X ′ have the same expectation m there is an optimal way to to
compute m by considering independent copies of λX + (1− λ)X ′, with λ = E((X ′ −X)X ′)/E(X −X ′)2. We have no
reason to do so in a FQ approach so we adopted the linear interpolation.
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– Finally the variance of the Heston Calls were computed (by a Monte Carlo simulation) in order
to compare the accuracy of the FQ approaches with respect to MC confidence intervals.
The implementation was achieved on a G5 (2.5 Ghz) Apple computer using MATLAB. The results
are reported in Tables 2 below (relative errors) and in Figure 8 (absolute errors).

Our comments on these first set of results are the following: the rate of the “Crude FQ” approach is
O(1/ log(N)) in accordance with the theoretical rate (e.g. passing from N = 96 ≈ 100 to N = 9 998 ≈
1002 divides the error by two). But its absolute accuracy is not sufficient for financial applications
(see Figure 8(a)).

On the other hand, the results obtained by the Romberg log-extrapolation method and the (in-
duced) K-interpolation method are outstanding: for both tested couples the error lies within 0.5 cent
(see Figure 8(b)-(c)). For the couple (M, N) = (966, 9 984) the error induced is lower than 0.2 cent
by Romberg log-extrapolation and lower than 0.1 cent by K-interpolation for all strike prices (note
that the differences with the reference price in Table 2 below are only due to rounding effect to the
nearest cent). This can be considered as a good indication on the conjecture (5.39). On this very
example the K-interpolation only yields a slight improvement. Its main asset is in fact its robustness
with respect to time discretization (as emphasized in further simulations). From a theoretical view-
point, these results plead in favour of the existence of higher order term at rate O((log N)−3/2) in the
expansion (5.40). Furthermore, a comparison between Figures 8(b) and 8(c) shows the expected effect
of the K-linear interpolation of Romberg log-extrapolations on the values of the absolute errors of the
Heston Call for small values of the strike K (deep in-the-money options), especially in a rough spatial
discretization setting ((M, N) = (96, 966)).

As concerns the comparison with a “crude” Monte Carlo method, we reported in Table 2 below
(third row) 2×StdN , where StdN denotes the (relative) standard deviation of a MC estimator (for
N = 10 000). This quantity defines its 95.5%-confidence interval. Note that by “crude” MC, we simply
mean a standard MC estimator without any variance reduction techniques.

One verifies that 2× Std10 000 is slightly higher (say 10 to 30%) than the relative error induced by
“crude”FQ-integration with N = 9 984 (within brackets, fourth row).

In terms of velocity, computing the whole premium vector (13 strike prices) by functional quan-
tization for (M,N) = (966, 9 984) including the Romberg log-extrapolation and the K-interpolation
takes (with n = 20) less than 0.5 second (this outperforms any Monte Carlo simulation but not the
“reference” Inverse Fourier Transform method (second row) but this is not our aim at this stage since
we use this setting as a benchmark).

K 44 45 46 47 48 49 50

Heston Call(Ref) 8.18 7.26 6.36 5.49 4.68 3.93 3.26

“Crude” Monte Carlo (2× Std10 000) (0.64%) (0.72%) (0.82%) (0.94%) (1.08%) (1.26%) (1.44%)

“crude” FQ (ĈrCall
Hest
(s0, K)) 8.14 7.21 6.31 5.45 4.64 3.89 3.22

N = 9984 (0.50%) (0.57%) (0.67%) (0.79%) (0.94%) (1.11%) (1.31%)

Romberg on “crude”FQ ( ̂RbgCrCall
Hest
(s0, K)) 8.18 7.25 6.36 5.49 4.68 3.93 3.26

(M,N)=(966-9984) (0.07%) (0.07%) (0.11%) (0.13%) (0.16%) (0.20%) (0.24%)

K-interpol. of RombergFQ (ÎRCall
Hest
(s0, K)) 8.18 7.26 6.36 5.49 4.68 3.93 3.26

(M,N)=(966-9984) (0.00%) (0.00%) (0.02%) (0.05%) (0.08%) (0.11%) (0.15%)
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K 51 52 53 54 55 56

Heston Call(Ref) 2.68 2.18 1.765 1.42 1.14 0.91

“Crude” Monte Carlo (2× Std10 000) (1.66%) (1.90%) (2.14%) (2.42%) (2.70%) (3.02%)

“crude” FQ (ĈrCall
Hest
(s0, K)) 2.64 2.14 1.73 1.39 1.11 0.89

N = 9984 (1.53%) (1.77%) (2.01%) (2.21%) (2.38%) (2.61%)

Romberg on “crude”FQ ( ̂RbgCrCall
Hest
(s0, K)) 2.68 2.18 1.765 1.42 1.14 0.91

(M,N)=(966-9984) (0.28%) (0.32%) (0.33%) (0.29%) (0.18%) (0.10%)

K-interpol. of RombergFQ (ÎRCall
Hest
(s0, K)) 2.68 2.18 1.765 1.42 1.14 0.91

(M,N)=(966-9984) (0.19%) (0.23%) (0.23%) (0.22%) (0.14%) (0.10%)

Table 2. A setting: Relative Standard deviation of the 10 000 Monte Carlo estimator, Heston Call by
“Crude” Functional Quantization (N = 9 984), Romberg log-extrapolation ((M,N) = (966, 9 984))

and K-linear interpolation.

Concerning the behaviour of the method with other sets of parameters, numerical experiments
not reproduced here (see [20]) show that the smaller the correlation ρ is (in absolute value), the
more efficient functional quantization is (the impact of the non L2

T
-continuous pointwise functional vT

decreases). Other experiments not reproduced here either show that, as expected, the error increases
(for both FQ and MC) as the volatility ϑ of the volatility process grows, but remains quite satisfactory
until ϑ = 30% (when a = 0.01).

B setting: ϑ2/(4k) < a. Any solution (vt) of (6.41) is positive and, once again an adaptation of the
proof of Theorem 1 in [13] would show that ‖ |v− ṽN |

L2
T

‖2 = O((log N)−
1
2
+ε). This time any numerical

implementation of this functional quantization method requires to discretize the integral system (4.36)
for the process (vt)t defined by the second equation in (6.41). This means setting b(v) = k(a− v) and
σ(v) = ϑ

√
v. We implemented a (slightly non-homogeneous) Euler scheme defined by: yn,N

i (0) = v0,

yn,N
i (tk+1) = yn,N

i (tk) + k

(
a− ϑ2

4k
− yn,N

i (tk)
)

(∆t)k + ϑ
√

yn,N
i (tk)(χN

i (tk+1)− χN
i (tk)), (6.51)

k = 0, . . . , n, with t0 = 0, tk = (2k − 1)T/(2n), k = 1, . . . , n, tn+1 = T and (∆t)k = tk − tk−1. Then,
one sets

yn,N
i (t) = yn,N

i (tk), t∈ ((k − 1)T/n, kT/n), k = 1, . . . , n.

This scheme is designed to optimize the computation of the integral below by a midpoint method.
Then, one designs a (non-Voronoi) N -quantization for the process (vt) by setting

ṽn,N
t =

∑

i

yn,N
i (t)1Ci(χN )(W

2). (6.52)

The integral 1
T

∫ T
0 ṽtdt is then approximated by

1
T

∫ T

0
ṽn,N
t dt =

1
n

n∑

k=1

ṽn,N (tk).

Since the functions yN
i are positive and the functions b, σ and χN are smooth on (0, +∞), it is

classical background in numerical analysis of ODE that

yN
i − yn,N

i =
ζN
i

n
+ Oi(1/n2)

where ζN
i satisfies an ODE involving b, σ and their higher order derivatives. This expansion holds for

the uniform convergence on compact sets.
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This suggests to implement a Romberg time extrapolation to speed up the convergence of Euler
scheme. More precisely, some standard computations based on a Taylor expansion of Φc show that

2Φc(y
2n,N
i − v0, y

2n,N
i )− Φc(y

n,N
i − v0, y

n,N
i ) = Φc(yN

i − v0, y
N
i ) +

Cn

n2
(6.53)

with supnE(Cn) < +∞.
The first tested method is to estimate the premium of the Heston Call by a Romberg log-

extrapolation (5.40) of the expectation of the left hand side of the above equation (6.53), still denoted
̂RbgCrCall

Hest
(s0,K). We used the same size couples (M, N) and introduced the same K-interpolated

estimator as in A setting (but the “crude” FQ approach was no longer tested given the results of
A setting). For numerical tests we set

s0 = 50, k = 2, r = 0.05, T = 1, ρ = 0.5, v0 = a = 0.01, ϑ = 0.1.

The time discretization of the integral system was processed with 2n = 64. This is finer than
in A setting but this time we do not simply evaluate some functions at the discretization times, we
discretize an integral system.

K 44 45 46 47 48 49 50

CallHest(FFT Ref. premium) 8.18 7.26 6.38 5.53 4.73 3.99 3.33

“Crude” Monte Carlo (2× Std10 000) (0.35%) (0.40%) (0.51%) (0.57%) (0.63%) (0.68%) (0.72%)

Romberg on “crude”FQ ( ̂RbgCrCall
Hest

(s0, K)) 8.18 7.25 6.38 5.53 4.73 3.99 3.33
(M,N)=(966-9984) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%)

K-interpol. of RombergFQ (ÎRCall
Hest

(s0, K)) 8.18 7.26 6.38 5.53 4.73 3.99 3.33
(966-9984) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%)

K 51 52 53 54 55 56

CallHest(FFT Ref. premium) 2.74 2.23 1.795 1.43 1.13 0.89

“Crude” Monte Carlo (2× Std10 000) (0.75%) (0.75%) (0.77%) (0.77%) (0.77%) (0.77%)

Romberg on “crude”FQ (R̂bgCall
Hest

(s0, K)) 2.74 2.23 1.795 1.43 1.13 0.89
(966-9984) (0.00%) (0.00%) (0.00%) (0.01%) (0.04%) (0.11%)

K-interpol. of RombergFQ (ÎRCall
Hest

(s0, K)) 2.74 2.23 1.795 1.43 1.13 0.89
(966-9984) (0.01%) (0.04%) (0.11%) (0.17%) (0.27%) (0.41%)

Table 3. B setting: Relative Standard deviation of the “crude” 10 000 Monte Carlo estimator,
Heston Call by Romberg log-extrapolation and K-linear interpolation with (M,N) = (966, 9 984).

Additional information of interest are the following:

CPU Time < 0.8 s, mean error (over K) = 5.10−4.

The results reported in Table 3 (relative errors) and Figure 5 (absolute errors) confirm those
obtained in the special A setting. Again the K-linear interpolation gives better results for lower
values of K (deep in-the-money options) as expected (see Figure 5(b)).

6.2 Pricing “Heston” Asian Call by functional quantization

The Asian Call premium is defined by

AsCallHest = e−rTE
((

1
T

∫ T

0
Ssds−K

)

+

)
.

Note that here the functional is not smoother than Lipschitz and that no closed form is available for
this option. We only consider the more general case ϑ2/(4k) < a. We adopt the same notations as for
the vanilla Call.
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First, we approximate the temporal mean by a midpoint quadrature formula i.e.

1
T

∫ T

0
Ssds ≈ 1

n

n∑

k=1

Stk

where tk = (2k − 1)T/(2n), k = 1, . . . , n. Following (6.41), we recall that for every t∈ [0, T ],

St = s0 exp
(

(r − 1
2
v̄t)t + ρ

∫ t

0

√
vsdW 2

s

)
exp

(√
1− ρ2

∫ t

0

√
vsdW̃ 1

s

)

= s0 exp
(

t

(
(r − ρak

ϑ
) + v̄t(

ρk

ϑ
− 1

2
)
)

+
ρ

ϑ
(vt − v0)

)
exp

(√
1− ρ2

∫ t

0

√
vsdW̃ 1

s

)
.

We start from the chaining rule for conditional expectations to compute this premium i.e.

AsCallHest(s0,K) = e−rTE
(
E

((
1
T

∫ T

0
Ssds−K

)

+

|σ((vt)0≤t≤T )
))

. (6.54)

Then one sets
Ŝn,N

t =
∑

i,j

sn,N
i,j (t)1χN

i
(W̃ 1)1χN

j
(W 2) (6.55)

where the multi-indices i and j run over
∏

k≥1{1, . . . , Nk} and

sn,N
i,j (t) = s0 exp

(
t

(
(r − ρak

ϑ
) + ȳn,N

j (t)(
ρk

ϑ
− 1

2
)
)

+
ρ

ϑ
(yn,N

j (t)− v0)
)

exp
(√

1− ρ2

∫ t

0

√
yn,N

j dχN
i

)
,

where yn,N
j are obtained as in (6.51). The rest of the procedure is quite similar to that implemented for

the Heston vanilla Call: “crude” functional quantization approach directly based on (6.54) and (6.55)
(and a time Romberg extrapolation). Indeed we set for a given time discretization size n

̂CrAsCall
Hest

(s0,K) = 2E(Φas(s0, K, 2n, χN ))− E(Φas(s0, K, n, χN )),

where Φas(s0,K, n, χN ) = e−rTE
((

1
T

∫ T

0
Ŝn,N

t dt−K

)

+

| FcW 2

T

)

= e−rT
∑

i,j

(
1
T

∫ T

0
sn,N
i,j (t)dt−K

)

+

P(W̃ 1∈ Ci(χN ))1χN
j

(W 2)

so that E(Φas(s0,K, n, χN )) = e−rT
∑

i,j

(
1
T

∫ T

0
sn,N
i,j (t)dt−K

)

+

P(W̃ 1∈ Ci(χN ))P(W 2∈ Cj(χN )).

Like for Heston vanilla Calls, its poor (but expected) rate of convergence leads to introduce a space

Romberg log-extrapolation ̂RCrAsCall
Hest

(s0,K) and, finally, a K-linear interpolation ̂IRAsCall
Hest

(s0,K)

between ̂RCrAsCall
Hest

(s0, K) and its counterpart ̂RPrAsCall
Hest

(s0,K) resulting from the Asian Call-
Put parity equation

AsCallHest(s0,K)−AsPut(s0,K) = s0
1− e−rT

rT
−Ke−rT .

The reference price was computed using a Monte Carlo simulation of size 108 (including a time
Romberg extrapolation with 2n = 32 and some variance reduction techniques).
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In this framework the quantization procedure has a greater complexity since we have to sum
over a bivariate functional product quantizer: namely the complexity of the quantizing procedure is
approximately N2 (since M ¿ N), but this is partially balanced by the lower volatility of the Asian
pseudo-asset 1

t

∫ t
0 Ssds compared to the original traded asset (St). Nevertheless, the comparison with

a crude MC simulation (through the computation of the standard deviation parameter) is made in
this framework with respect to a 106-MC estimator (using the same time Romberg extrapolation but
no variance reduction).

We evaluated the method with both couples (M,N) = (96, 966) and (M, N) = (966, 9 984). The
time discretization size is 2n = 32. The results are reported in Table 4 below (relative errors for the
first couple only) and are depicted in Figure 6 (absolute errors).

K 44 45 46 47 48 49 50

Heston Asian Call(108-MC Reference) 6.92 5.97 5.03 4.11 3.245 2.46 1.79

“Crude” Monte Carlo (2× Std106) (0.08%) (0.10%) (0.11%) (0.14%) (0.16%) (0.20%) (0.26%)

Romberg on “crude” FQ ( ̂RCrAsCall
Hest
(s0, K)) 6.92 5.97 5.03 4.12 3.25 2.47 1.80

(M,N)=(96-966) (0.01%) (0.04%) (0.05%) (0.09%) (0.17%) (0.32%) (0.63%)

K-interpol. of RombergFQ ( ̂IRAsCall
Hest
(s0, K)) 6.92 5.97 5.03 4.11 3.24 2.46 1.79

(M,N)=(96-966) (0.01%) (0.02%) (0.02%) (0.04%) (0.05%) (0.04%) (0.03%)

K 51 52 53 54 55 56

Heston Asian Call(MC Ref) 1.25 0.84 0.54 0.34 0.21 0.125

“Crude” Monte Carlo (2× Std106) (0.31%) (0.39%) (0.50%) (0.63%) (0.81%) (1.04%)

Romberg on “crude” FQ ( ̂RCrAsCall
Hest
(s0, K)) 1.26 0.85 0.56 0.36 0.23 0.15

(M,N)=(96-966) (1.16%) (2.06%) (3.73%) (6.58%) (11.53%) (19.96%)

K-interpol. of RombergFQ ( ̂IRAsCall
Hest
(s0, K)) 1.25 0.84 0.545 0.34 0.21 0.125

(M,N)=(96-966) (0.17%) (0.37%) (0.78%) (1.37%) (2.15%) (2.84%)

Table 4. B setting: Relative Standard deviation of the 106-Monte Carlo estimator, Heston Asian Call by
Romberg log-extrapolation and the induced K-linear interpolation with (M, N) = (96, 966).

Additional information of interest are the following:

(M, N) = (96, 966), CPU Time < 4.4 s, mean quadratic error (over K) = 7.51 10−4.

The main comments are the following: when (M, N) = (96, 966) the Romberg log-extrapolated
premia are not satisfactory (although the errors remain within 2 cents and decrease when the options
goes out-of-the money so that the relative error remains bounded). On the other hand, the K-
interpolation method produces premia with an error lying within 0.5 cent with respect to the Monte
Carlo reference price. This is quite satisfactory although this may induce non vanishing relative errors
for deep out-of-the-money options (but in practice Asian options are dealt closer to the money than
plain vanilla options). The functional quantization approach is fifteen times faster than a 106-MC
simulation having exactly the same characteristics (in particular a time Romberg extrapolation with
2n = 32): CPU time is 4.4 seconds with FQ with 13 strike prices versus 66 seconds for MC (on our
device).

When (M,N) = (966, 9 984), the error induced by the Romberg log-extrapolation lies now within
0.5 cent. As concerns the K-interpolated premia one observes a little improvement (maximal error
within 0.4 cent on Figure 6(b)) but the computation time is of no interest for application (close to 430
seconds ≈ 7 mn) but the mean accuracy remains similar (6.35 10−4). We can see again the efficiency
of the K-linear interpolation in the low discretization setting (96, 966). It gives the same kind of
precision as for (966, 9 984) (compare Figure 6(a)-(b)).

As a conclusion to this section, we would like to insist on the following fact: the quantizing sizes
have been selected a priori, namely Nrec for N = 100, 1 000, 10 000, 100 000. For every problem some
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parameter dependent couples (M,N) produce significantly more accurate results. We decided not to
report these results which are not significant in view of operating applications. However, the next step
is to carry on a systematic search for some possibly globally more performing couples (M, N). This
requires to have more insight on the interaction between M and N in the log-Romberg extrapolation.
Finally, we would like to emphasize that we decided not to implement the FQ counterpart of any
usual “control variate random variable”. When implemented they do improve the results (see [20]
for the case of the Asian option in Black-Scholes model). Note that what have been proposed here
straightforwardly applies to the C.I.R. interest rate model.

7 FQ as a control variate variable in a FQ-MC method for non
smooth functionals.

Numerical integration on the L2
T
-space by functional quantization turns out to performs surprisingly

well as emphasized on the two formerly investigated option pricing problems. It provides very accurate
deterministic proxies for medium values of N , say N ≈ 10 000. However, in both cases the underlying
functionals had some regularity on L2

T
. For less regular functionals (like indicator functions, etc) it

can be interesting is to use numerical FQ for small values of N – say N ≈ 100 – as a control variate
random variable in a Monte Carlo simulation.

We will briefly outline this approach now. Let us consider the case of a functional F (W ) of the
Brownian motion W (but what follows formally applies too any Gaussian process with an explicit
K-L expansion). In order to compute E(F (W )), one writes

E(F (W )) = E(F (ŴN )) + E
(
F (W )− F (ŴN )

)

= E(F (ŴN ))︸ ︷︷ ︸
(a)

+
1
M

M∑

m=1

F (W (m))− F (Ŵ (m)
N

)

︸ ︷︷ ︸
(b)

+RN,M (7.56)

where (W (m))m=1,...,M are M independent copies of the standard Brownian motion and RN,M is a
remainder term defined by (7.56). Term (a) is computed by quantization and Term (b) is computed
by a Monte Carlo simulation of the K-L expansion of the Brownian motion. Then,

E|RN,M |2L2
T
≤ E|F (W )− F (ŴN )|2

M
and

√
M RN,M

L−→ N (0; ‖F (W )− F (ŴN )‖2)

as M → +∞ so that if F is simply a Lipschitz functional (e.g. like the payoff of the Asian Call in a
Black-Scholes model) and if (ŴN )N≥1 is a rate optimal sequence of product quantization, then

‖F (W )− F (ŴN )‖2 ≤
[F ]LipCW

(log N)
1
2

and ‖ |RN,M |L2
T

‖2 ≤
[F ]LipCW

(M log N)
1
2

.

The simulation of ŴN from W =
∑

n≥1

√
λn ξneW

n amounts to solving for every n = 1, . . . , mN ,
the nearest neighbour problem for the simulated Gaussian variable ξn into the Nn-quantizer set
{x(N1)

1 , . . . , x
(Nn)
Nn

}.

8 Provisional remarks

First let us mention that several speeding up procedures (especially the Romberg log-extrapolation,
etc) remains partially heuristic and subsequently would need some theoretical support: this means
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that deeper investigations on these specific theoretical aspects of functional quantization should be
carried out.

On the other hand, further numerical developments to still improve the efficiency of quadrature
formulæ based on functional quantization could be:

– to search for some (reasonably) “universal” good couples (M,N) that would improve the perfor-
mances of our selected couples (some numerical work is in progress in that direction, see [23]). This
needs to have more insight on the interaction between M and N in the Romberg log-extrapolation.

– to investigate the quantization using higher dimensional marginals (see [23]).
– to replace the Romberg log-extrapolation by a “three step” extrapolation method to cancel two

terms instead of one in the expansion of the error E(Ψ(W ) − ψ(Ŵ )). This requires some insight on
the rate of convergence of quantities like E(Θ(Ŵ ).(W − Ŵ )⊗3).

– the implementation of an L2
T
-valued extension of the CLV Q procedure used in finite dimension

to get some (locally) optimal quantizers (see [19]). The CLV Q procedure is the stochastic gradient
descent derived in d-dimension from the integral representation of the distortion gradient function
(see (3.4) and [16] and [19]). However, the bounds obtained in (5.37) show that the gain to be
expected from such a stochastic optimization remains limited.

Finally, let us mention that the K-L expansion of the Brownian motion W is in fact a.s. converging
in (C([0, T ]), ‖ . ‖sup). This follows from the Kolmogorov criterion and the Lévy-Ito-Nisio Theorem
(see e.g. [22] p.104 and p.431 respectively). A.s. uniform convergence holds for the Schauder basis
as well. This suggests to evaluate the performances of K-L product quantizers for the ‖ . ‖sup-norm
(theoretically, see [14], but also numerically): the family of PW -a.s. ‖ . ‖sup-continuous functional is
much wider than for the ‖ . ‖2-norm and contains most natural functionals (supremum, Brownian
hitting times, stopped functionals, etc) involved in path-dependent options (lookback, barriers, down-
and-out, etc).

Acknowledgement: We thank Harald Luschgy for helpful discussions.
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Annex: proof of the quadrature formulæ

(a) This error bounds readily follows from |F (X)− F (X̂x)| ≤ [F ]Lip|X − X̂x|.
(b) Formula (3.7) can be derived as follows:

|F (X)− F (X̂x)| ≤ [F ]Liploc|X − X̂x|(θ(X) + θ(X̂x)).

Hence by the Schwarz inquality

E|F (X)− F (X̂x)| ≤ [F ]Liploc‖X − X̂x‖2(‖θ(X)‖2 + ‖θ(X̂x)‖2).

Now θ2 is convex since θ is and u 7→ u2 is increasing and convex on R+. Consequently

E θ2(X̂x) = E θ2(E(X|X̂x)) ≤ E(E(θ2(X)|X̂x)) = E(θ2(X))

which completes the proof. Concerning (3.8), one starts from a Taylor expansion, where DF denotes the
differential of F and ‖ . ‖ the operator norm on L(H),

|F (X)− F (X̂x)− (DF (X̂x), X − X̂x)| ≤ sup
z∈(X, bXx)

‖DF (z)−DF (X̂x)‖|X − X̂x|

≤ [DF ]α |X − X̂x|1+α.

Consequently
∣∣∣EF (X)−EF (X̂x)−E

(
(DF (X̂x) |X − X̂x)

)∣∣∣ ≤ [DF ]αE |X−X̂x|1+α.
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Now
E

(
(DF (X̂x) |X − X̂x)

)
= E

((
DF (X̂x) |E(X − X̂x|X̂x)

))
= E

((
DF (X̂x) | 0H

))
= 0.

To establish the last quadrature formula, one notes, using the convexity of θ that

sup
z∈(X, bXx)

‖DF (z)−DF (X̂x)‖ ≤ [DF ]Liploc|X − X̂x|(θ(X̂x) + sup
z∈(X, bXx)

θ(z))

≤ [DF ]Liploc|X − X̂x|(θ(X̂x) + max(θ(X), θ(X̂x)))

≤ [DF ]Liploc|X − X̂x|(2θ(X̂x) + θ(X)).

and one concludes as above by combining Jensen and Schwarz Inequalities. ♦
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Figure 1: The Nrec-quantizer χN
rec =

√
λ⊗x for N = 10 (Nrec = 2×5 = 10), N = 50 (Nrec = 12×4 =

48) and N = 100 (Nrec = 12× 4× 2 = 96).
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Figure 4: Heston vanilla Call, A setting (absolute errors): T =1, s0 =50, k=0.250, a=0.01, ρ=0.5,
ϑ=0.1.
(a) K 7−→ CallHest(s0,K)− ĈrCall

Hest
(s0,K), K∈ {44, . . . , 56}.

Pricing by “crude” Functional Quantization (−−◦−−), N = 96, 966, 9 984, 97 920.

(b) K 7−→ CallHest(s0,K)− ̂RbgCrCall
Hest

(s0,K), K∈ {44, . . . , 56}.
Pricing by a Romberg log-extrapolation (−−∗−−) with (M, N)=(96-966), (966-9984).

(c) K 7−→ CallHest(s0,K)− ̂IRCAll
Hest

(s0,K), K∈ {44, . . . , 56}.
Pricing by K-linear interpolation of Romberg log-extrapolations (−−×−−) with (M,N)=(96, 966),
(966, 9984).
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Figure 5: Heston vanilla Call, B setting (absolute errors): T = 1, s0 = 50, k = 2, a = 0.01, ρ = 0.5,
ϑ=0.1
(a) K 7−→ CallHest(s0,K)− ̂RbgCrCall

Hest
(s0,K), K∈ {44, . . . , 56}.

Pricing by Romberg log-extrapolation (−−∗−−), (M,N)= (966, 9984).

(b) K 7−→ CallHest(s0, K) − ÎRCall
Hest

(s0, K), K ∈ {44, . . . , 56}. Pricing by K-linear interpolation of
Romberg log-extrapolations (−−×−−) with (M, N)= (966, 9984).
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Figure 6: Heston Asian Call, B setting (absolute errors): T = 1, s0 = 50, k = 2, a = 0.01, ρ = 0.5,
ϑ=0.1
(a) K 7−→ AsCallHest(s0,K)− ̂RbgAsCall

Hest
(s0, K), K∈ {44, . . . , 56}.

Pricing by Romberg log-extrapolation (−−∗−−), (M, N)=(96, 966), (966, 9984).

(b) K 7−→ AsCallHest(s0, K)− ̂IRAsCall
Hest

(s0,K), K∈ {44, . . . , 56}.
Pricing by K-linear interpolation of Romberg log-extrapolations (−−×−−) with (M, N)= (96, 966),
(966, 9984).
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